Animal Community is the Key of Ecological Purification Process in the Ecological Water Purification System to make Safe Drinking Water Nobutada NAKAMOTO, Yuki YOSHIMOTO, and Kazuhiro YAMADA, Shinshu University, Japan



Beneficial effect of algal growth on filter clog using bucket model experiment

O pen bucket : Algal growth under sun shine $\rightarrow$ Algal and animal can grow. $\rightarrow$ no clog: long filter run

C ove red bucket :Increase the filter resistance: easily clog the filter $\rightarrow$ No growth of algae $\rightarrow$ no food for animals $\rightarrow$ Animal as a collector of suspended matter does not grow.

There are some mistreatments for algal growth
Algal growth control



> Algal growth gives a better condition for animal community: aerobic condition, food production.

## Beneficial effect of

 algal growth on filter clog and removal of floating algae using buckets model experiment
## Experimental design



Removal of floating algae


Open \& remove
using a tea leaf strainer

Filter resistance : Head Loss

Biomass sampling of algae and animal on the sand surface using a hand suction pump.


$\uparrow$ Head Loss


Normalized Head Loss (NHL) is used which is calculated under the standard filtering rate ( $4.8 \mathrm{~m} / \mathrm{d}$ ).
$\mathrm{NHL}(\mathrm{m})=4.8(\mathrm{~m} / \mathrm{d}) /$ real flow rate $(\mathrm{m} / \mathrm{d}) \times$ real $\mathrm{HL}(\mathrm{m})$
Experimental period : Sept.29. - Oct. 23. 2007 (25 days) in autumn. resistance is related with filtering rate.

## Turbidity

The turbidity in each filtrate water became low day by day within one week. However clear difference among the different treatment were not observed.



Changes in algal biomass in raw water (inflow) during the filter run.



Inflow: raw water

More than half of inflow algae from the irrigation channel is under unhealthy condition such as dead or broken cells.

Filter run in days


Changes in animal biomass in raw water (inflow) during the filter run.



Inflow: raw water
The biomass of inflow water changes on the day. Dominant species is ciliata.



Algal biomass change during the filter run.


Only the filamentous diatom of Melosira grew well and it became dominant in open models during the filter run. However same algal species as the inflow algae were accumulated on the surface of the covered model.


## Change of animal biomass during the filter run

Development of animal community were observed only in the open models like as algal development. Dominant animal as bio-volume was ciliate and the second dominant was rotifer.


Open \& removal


Open \& non removal


## Covered



Change of filter resistance as NHL (Normalized Head Loss) during the filter run.


No filter clog was observed in the open models where algal growth was observed. However, the filter resistance of the covered model increased during the filter run. There was no difference between the removal model and the non-removal model.

Vertical profile of algal bio-mass in the upper sand layer at the end of the experiment

Algal biomass/Sand (mg/g)


Vertical profile of animal bio-mass in the upper sand layer at the end of the experiment


## Vertical profile of Suspended Solid, Algae and Animals



Any particulate matter of non-biological (Suspended Solid) and biological matter (algae and animal) were trapped at the top of sand column.

Conclusion : Filter did not clogged in both open models (removal and nonremoval) . In the open model, algal growth was observed. And animals were also developed where algae grew. Algal growth and animal community may be essential for well condition of ecological purification system of slow sand filtration.


Algae are better food for animals. Algal photosynthesis makes a lot of oxygen. And algal growth makes aerobic condition.


Natural flow


Particle free water: ready to drink as safe water

Remove particulate and dissolved matters.

Animal activity is the key for prevent the filter clogging.

