Recent Progress in Slow Sand and Alternative Biofiltration Processes

Slow sand filtration is typically cited as being the first "engineered" process in drinking-water treatment. Proven modifications to the conventional slow sand filtration process, the awareness of induced biological activity in riverbank filtration systems, and the growth of oxidant-induced biological removals in more rapid-rate filters (e.g. biological activated carbon) demonstrate the renaissance of biofiltration as a treatment process that remains viable for both small, rural communities and major cities. Biofiltration processes are expected to become even more common in the future as efforts intensify to decrease the presence of disease-causing microorganisms and organic micropollutants in drinking water, to minimize microbial regrowth in distribution systems, and to enhance the cost-effectiveness and reliability of water treatment.

This book provides a state-of-the-art assessment on a variety of biofiltration systems from studies conducted around the world. The authors collectively represent a perspective from 23 countries and include academics, biofiltration system users, designers, and manufacturers.

It provides an up-to-date perspective on the physical, chemical, biological, and operational factors affecting the performance of slow sand filtration (SSF), riverbank filtration (RBF), soil-aquifer treatment (SAT), and biological activated carbon (BAC) processes. The main themes are: comparable overviews of biofiltration systems; slow sand filtration process behaviour, treatment performance and process developments; and alternative biofiltration process behaviour, treatment performance and process developments.
Recent Progress in Slow Sand and Alternative Biofiltration Processes

Edited by

Prof. Dr.-Ing. habil. Rolf Gimbel
IWW Rheinisch-Westfälisches Institut für Wasser, and Universität Duisburg-Essen, Germany

Prof. Dr. Nigel J.D. Graham
Imperial College London, UK

and

Prof. Dr. M. Robin Collins
University of New Hampshire, USA
Contents

Preface xiii

Programme Advisory Committee xv

Part I General overview

3 Assessing the Role of the Schmutzdecke in Pathogen Removal in Riverbank and Slow Sand Filtration M. Unger and M.R. Collins 21

4 30 Years of RWW’s Practical Experience with an Advanced Microbiological Water Treatment System for Ruhr River Water - The “Muelheim Process 1976–2006” G. Bundermann 30

5 Advances in Hybrid Membrane Filtration System for Drinking Water Production Y. Watanabe, T. Suzuki, T. Morita and G. Ozawa 39

Part II Slow sand filtration – process behaviour

6 Chironomid Midges: The Forgotten Water Industry Engineers? S.P. Hurley and R.S. Wotton 51

7 Role of Algal Growth and Photosynthesis in Slow Sand Filters as an Advanced Wastewater Treatment N. Iwase, S. Kinoshita, M. Kojima and N. Nakamoto 60

8 Development Pattern of Filamentous Diatom and its Condition related with Midge Larvae in Slow Sand Filter N. Nakamoto and H. Kato 68
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>The Effect of Water Temperature on the Slow Sand Filter Process</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>H. Jabur</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mishaps Linked to Incorrect Use of Slow Sand Filters</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>J. Martensson and H. Jabur</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dissolved Oxygen Issues with Granular Activated Carbon Sandwich™ Slow Sand Filters</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>M.E.J. Steele, H.L. Evans, J. Stephens, A.J. Rachwal and B.A. Clarke</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Numerical Simulation of Slow Sand Filtration and Parameter Estimation of Relevant Processes</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>M. Rödelsperger</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Use of a Novel Simulation Model to Define the Behaviour of Covered and Uncovered Slow Sand Filters</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>L.C. Campos, S.R. Smith and N.J.D. Graham</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Characteristics of Straining of Escherichia coli in Saturated Porous Media</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>J.W. Foppen, M. van Herwerden and J.F. Schijven</td>
<td></td>
</tr>
</tbody>
</table>

Part III Slow sand filtration – treatment performance

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>The Removal of Turbidity in a Multistage Slow Sand Pilot-Plant Under Challenging Conditions</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>W.B. Anderson, J.L. DeLoyde, R.A. LeCraw, M. Galan, S.A. Cleary and P.M. Huck</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Removal of Cryptosporidium oocysts and Giardia cysts by Pilot-Scale Multistage Slow Sand Filtration</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>J.L. DeLoyde, W.B. Anderson, S.A. Cleary, S. Ndiongue, R.A. LeCraw, M. Galan and P.M. Huck</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fecal Contamination Indicator Organisms in Slow Sand Filters</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>H. Petry-Hansen, H. Steele, M. Grooters, J. Wingender and H.-C. Flemming</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Microbiological Conditions Before and After Cleaning in Slow Sand Filters under Tropical Conditions</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>L.D. Sánchez, J. Latorre, G. Galvis and J.T. Visscher</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Biofiltration of Microcystin Toxins: An Australian Perspective</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>L. Ho, D. Hoefel, T. Meyn, C.P. Saint and G. Newcombe</td>
<td></td>
</tr>
</tbody>
</table>
20 Removal of Cyanobacterial Toxins (Microcystins) during Slow Sand and Bank Filtration
G. Grützmacher, G. Wessel, I. Chorus and H. Bartel
171

21 Removal of Microcystis Aeruginosa and Microcystins by Slow Sand Filtration: a Pilot Scale Study
J.C. Sá and C.C.S. Brandão
178

22 Behavior of Selected Drugs During Slow Sand Filtration
B. Kuhlmann, N. Zullei-Seibert, J. Nolte and M. Grote
188

23 Down-Scaled Study of Slow Sand Filtration of Secondary Effluents
G.B. Ari and A. Adin
194

24 Performance Evaluation of Three Slow Sand Filters
A. Alicea, J.C. Robles, H. Guillont and R. A. Rios
206

Part IV Slow sand filtration – process developments

25 Impacts of Chemical Pre-Treatment on Slow Sand Filtration.
C.C. Dorea and B.A. Clarke
215

26 Removal of Humic Substances in Slow Sand and in Slow Sand/Activated Carbon Filtration Using Ozone and Hydrogen Peroxide as Pre-Oxidants
L. Di Bernardo and E.P. Tangerino
224

27 Covering Slow Sand Filters; Qualitative and Operational Aspects
J. Abrahamsson and P. Dromberg
231

28 Robotic Cleaning of Slow Sand Filters Improves Filter Quality
J. Back
240

29 Comparison between Traditional and Under-water Rinsing Methods of Slow Sand Filters
H. Jabur and J. Mårtensson
247

30 Extension of Slow Sand Filter Running Times by Protection Layers
H.-J. Mälzer and R. Gimbel
251

31 Study on the Application of Alternative Filter Materials Using Slow Sand Filtration
U. Hütter and F. Remmler
260
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Intermittent Slow Sand Filters for Household Use – A Field Study in Haiti</td>
<td>D.L. Baker and W.F. Duke</td>
<td>278</td>
</tr>
<tr>
<td>34</td>
<td>Appropriate Technology for the Treatment of Drinking Water in Roche, Tanzania</td>
<td>S.I. Pumphrey, D.W. Divelpiss and D.B. Oerther</td>
<td>283</td>
</tr>
<tr>
<td>Part V Alternative biofiltration – process behaviour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Biomass Development in Biological Activated Carbon Filters</td>
<td>L.T.J. van der Aa, A. Magic-Knezev, L.C. Rietveld and J.C. van Dijk</td>
<td>293</td>
</tr>
<tr>
<td>36</td>
<td>Nutritional Versatility of Two Polaromonas Related Bacteria Isolated from Biological Granular Activated Carbon Filters</td>
<td>A. Magic-Knezev and D. van der Kooij</td>
<td>303</td>
</tr>
<tr>
<td>37</td>
<td>Biological Fouling of Structures in Roughing Filters Used Prior to Slow Sand Filtration</td>
<td>M.J. Chipps, R.G.W. Bayley, M.E. Steele, R. White, A. Mikol, E. Fricker and C.S.B Fitzpatrick</td>
<td>312</td>
</tr>
<tr>
<td>38</td>
<td>Influence of Hydraulic Retention Time on the Treatment Efficiency of a Biological Aerated Filter with Shale Gravel Media</td>
<td>L. Qiu, J. Ma and L. Zhang</td>
<td>321</td>
</tr>
<tr>
<td>Part VI Alternative biofiltration – treatment performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>The Removal of Green Fluorescent Labelled Escherichia Coli by Pilot Scale Drinking Water Biofilters</td>
<td>M. Silva, S. McLellan and J. Li</td>
<td>337</td>
</tr>
<tr>
<td>41</td>
<td>Removal and Inactivation of Waterborne Viruses Using Zero-Valent Iron</td>
<td>Y. You, J. Han, L. Zhang, Y. Jin and P.C. Chiu</td>
<td>345</td>
</tr>
</tbody>
</table>
Contents

42 Removal of MIB and Geosmin by Full-Scale Biological Sand Filters
D.H. Metz, R.C. Pohlman, J. Vogt and R.S. Summers

43 Removal of Geosmin and MIB in Biofilters - On the Role of Biodegradation and Adsorption
W. Uhl, F. Persson, G. Heinicke, M. Hermansson and T. Hedberg

44 Biodegradation of MIB and Geosmin in Biological Sand and BAC Filters: Acclimation, Steady-State and Varying Influent Conditions
R.S. Summers, S. Chae, S.M. Kim and H.W. Ahn

45 Microcystin-LR Removal by Bench Scale Biologically-Activated-Carbon Filters
E. Mesquita, J. Menaia, M.J. Rosa and V. Costa

46 Removal of Organic Pollutants from Micro-polluted Source Water by O₃-BAC Process
Z.-Y. Wang, H.-J. Han, W.-C. Ma and M. Xue

47 Iron and Manganese Removal by Multi-Stage Filtration (MSF)
L.D. Sánchez and L.M. Burbano

Part VII Alternative biofiltration – process developments

48 Ozonation/Biofiltration for Treatment of Humic Surface Water
H. Ødegaard, E. Melin and T. Leiknes

49 Ozonation/Biofiltration with Calcium Carbonate as Biofilter Media
E. Melin, R. Skog and H. Ødegaard

50 The Effect of Permanganate Preoxidation on Biomass Nitrification
Z. Ren and M. Jun

51 Integrated Biological Filtration and Reverse Osmosis Treatment of Cold Poor Quality Groundwater on the North American Prairies
H. Peterson, R. Pratt, R. Neapetung and O. Sortehaug

52 Heterotrophic Denitrification in Drinking Water Treatment - Results from Pilot Plant Experiments in Mashhad / Iran
O. Dördelmann, P. Buchta, S. Panglisch, F. Klegraf, A. Moshiri and A. Emami
53 A Biological Filtration Process for Denitrification with Polycaprolactone as Solid Substrate in a Rotating Reactor
A. Boley, I. Frommert and W.-R. Müller 443

54 Biological Denitrification of Ground Water – 8 Years Full Scale Experiences with the BIODEN-Process
F. Hell 451

55 Alternative Low Density Media For Use In Biological Rouging Filtration Prior To Slow Sand Filtration
R.G.W. Bayley, M.J. Chipps, M. Steele, R. White, A. Mikol and C.S.B. Fitzpatrick 460

56 Assessment of Roughing Filtration for Pretreatment of Urban Wetland Waters

57 Performance of a Direct Horizontal Rouging Filtration (DHRF) System in Treatment of Highly Turbid Water
A.H. Mahvi, M. Ahmadi Moghaddam, S. Nasseri and K. Naddafi 470

58 Retention of Hygienically Relevant Microorganisms from Storm Water Effluents by Sand Filters
S. Grobe, H. Petry-Hansen, M. Uhl and H.-C. Flemming 474

59 Submerged Biological Aerated Filter for Pretreatment of Potable Water in China
J.J. Chen 480

60 Effects of Inlet Type and Reactor Style on Biological Aerated Filter Backwashing
H.-J. Han, W.-C. Ma, J.-H. Huang, D. Zhong, M. Xue and Z.Y. Wang 484

61 Intermittent Filtration of Bacteria and Colloids in Porous Media
A.A. Keller and M. Auset 490

62 Technical Evaluation of Rainwater Harvesting Filtration Systems in India
D. Khare, Ramakant and C.S.P. Ojha 495

63 Biological Filtration of Organic Solid Materials from Municipal Wastewater with the Aerated Constructed Wetland
64 Method for Calculation of Filtration in Layered Filters (Linear Mass Exchange Kinetics)
V.L. Polyakov and V.B. Sidor
506

65 Multi-Stage Filtration (MSF) to Prevent Biofilm Growth in a Distribution Network
L.D. Sánchez, L.M. Burbano and A. Sánchez
511

Part VIII River bank filtration and groundwater recharge

66 Bank Filtration and Groundwater Recharge for Treatment of Polluted Surface Waters
M. Jekel and S. Gruenheid
519

67 Classification of Riverbank Filtration Sites and Removal Capacity
C. Skark, F. Remmler and N. Zullei-Seibert
530

68 Efficiency of Riverbank Filtration Considering the Removal of Pathogenic Microorganisms of the River Rhine
H.-P. Rohns, C. Forner, P. Eckert, and R. Irmscher
539

69 Changes in DOC Fractions in the Flow Regime of a Riverbank Filtration System
K. Wichmann, C. Schlinke and M. Marschke
547

70 Behaviour of Cryptosporidium Oocysts and Giardia Cysts during Artificial Groundwater Recharge
U. Hütter, G. Preuß and N. Zullei-Seibert
552

71 Assessing the Impact of Local Boundary Conditions on the Fate of Organic Micropollutants during Underground Passage
C.K. Schmidt, F.T. Lange and H.J. Brauch
561

72 Deep Bed Regeneration of Infiltration Basins
M. Schöpel and H. Losen
570

Author index
575

Keyword index
579
Preface

Slow sand filtration is typically cited as being the first “engineered” process in drinking water treatment. Proven modifications to the conventional slow sand filtration process, the awareness of induced biological activity in riverbank filtration systems, and the growth of oxidant-induced biological removals in more rapid-rate filters, e.g. biological activated carbon, demonstrate the renaissance of biofiltration as a treatment process that remains viable for both small, rural communities and major cities. Biofiltration is expected to become even more common in the future as efforts intensify to decrease the presence of disease-causing microorganisms and disinfection by-products in drinking water, to minimize microbial regrowth potential in distribution systems, and where operator skill levels are emphasized.

As a contribution to this growing interest in slow sand and alternative biofiltration systems, the editors with the assistance of others, have held three previous international conferences on this theme beginning in London (November 1988), New Hampshire (USA-October 1991), and London and Amsterdam (April 1996). A fourth conference, held in Mülheim, Germany (May 2006), aimed to build on the success and momentum of the previous meetings by providing an updated perspective on the physical, chemical, biological, and operational factors affecting the performance of slow sand filtration (SSF), riverbank filtration (RBF), soil-aquifer treatment (SAT), and biological activated carbon (BAC) processes. The main themes of the conference encompassed: comparable overviews of biofiltration systems; slow sand filtration process behavior, treatment performance and process developments; and alternative biofiltration process behaviors, treatment performances, and process developments.

Compiled from the contributors to the 4th International Slow Sand and Alternative Biological Conference, this book provides a state-of-the-art assessment on a variety of biofiltration systems from studies conducted around the world. The authors collectively represent a perspective from 23 countries and include academicians, biofiltration system users, designers, and manufacturers.

The editors would like to give special recognition to the conference sponsors and supporters including the IWA (UK), Federal Ministry of Education and Research (Germany), IWW Water Centre (Germany), RWE Aqua (Germany), Thames Water Utilities (UK), RWW (Germany), Amsterdam Water Supply (The Netherlands), Zürich Water Supply (Switzerland), AWWA Research Foundation (USA), University of Duisburg/Essen (Germany), Imperial College London (UK), and the Water Treatment Technology Assistance Center at the University of New Hampshire (USA). The editors extend appreciation to the distinguished members of the Programme Advisory Panel (listed separately) for their assistance in the selection of the conference papers. Finally, the editors wish to gratefully acknowledge Stefan Panglisch, Vaso Partinoudi, and especially Hans-Joachim Mälzer for their administrative assistance. The conference was truly an international enterprise and
such collaborative efforts are just one reason why biological filtration will continue its worldwide evolution.

R. Gimbel (University of Duisburg-Essen, Germany)
N.J.D. Graham (Imperial College London, UK)
M.R. Collins (University of New Hampshire, USA)
May 2006
Mr René van der Aa: Amsterdam Water, The Netherlands
Dr Josefín Abrahamsson: Stockholm Water Company, Sweden
Prof. Dr Gary Amy: UNESCO-IHE Delft, The Netherlands
Prof. Dr Luiz Di Bernardo: University of Sao Paulo, Brazil
Prof. Dr Hans-Curt Flemming: IWW Water Centre, Germany
Prof. Dr Peter Huck: University of Waterloo, Canada
Prof. Dr Ma Jun: Harbin Institute of Technology, China
Prof. Dr Barry Lloyd: CEHE University of Surrey, UK
Dr Hans-Joachim Mälzer: IWW Water Centre, Germany
Prof. Dr Nobutada Nakamoto: Shinshu University, Japan
Prof. Dr Hallvard Ødegaard: Norwegian University of Science/Technology, Norway
Prof. Dr C. Ojha: Indian Institute of Technology/University of Roorkee, India
Mr Tony Rachwal: Thames Water Utilities/RWE, UK
Prof. Dr Scott Summers: University of Colorado, USA
Mrs Bénédicte Welte: Eau de Paris, France
Mrs Dipl.-Chem.-Ing. Ninette Zullei-Seibert: Westfälische Wasser- und Umweltanalytik GmbH, Germany